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My research interests and experiences lie in algebra and combinatorics. More specifically, my
dissertation is on affine Lie algebras and their representations. I am interested in learning more
about the structure of certain representations by determining key features of a representation
called maximal dominant weights and their multiplicities. Below, I will give some background
into affine Lie algebras and their representations. I will then discuss my contributions to this area
as well as give possible future directions and projects with undergraduates.

Lie Algebras and their Representations

Sophus Lie discovered Lie algebras in the 19th century while studying the symmetries of
solutions of differential equations. Today Lie algebras influence the study of differential geometry
and topics in mathematical physics including quantum mechanics and particle physics.

A Lie algebra is a vector space, g, together with a bilinear product [·, ·] : g × g → g that
satisfies [x, x] = 0 for all x ∈ g and the Leibniz identity, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 [4].
Note that this product is skew symmetric, i.e. [x, y] = −[y, x], due to the first condition and the
bilinearity of the product. For example, if V is a vector space, the set of linear operators on V is a
Lie algebra, denoted gl(V ) with the bracket [x, y] = x ◦ y − y ◦ xwhere x ◦ y is the composition of
linear operators. If V has finite dimension n, the elements of this Lie algebra can be thought of as
n × nmatrices. In the case n = 2, the subalgebra of gl(2) consisting of matrices of trace 0 is an
important Lie algebra denoted sl(2). The basis vectors and corresponding bracket relations for
this space are

h =
[

1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
and [h, e] = 2e, [h, f ] = −2f, [e, f ] = h

An ideal of a Lie algebra is a subspace I of L such that [x, y] ∈ I for all x ∈ L and y ∈ I . A Lie
algebra is called simple if it is nonabelian (meaning [x, y] 6= 0 for some elements x, y ∈ L) and has
no nontrivial proper ideals. sl(2,F) is a simple Lie algebra, provided charF 6= 2. A Lie algebra is
called semisimple if it is the direct sum of simple Lie algebras.

A representation is a Lie algebra homomorphism ρ : g→ gl(V ), where V is a vector space
and ρ([x, y])(v) = (ρ(x)ρ(y) − ρ(y)ρ(x))v for all x, y ∈ g and v ∈ V . V is then referred to as
a g-module; the words “representation” and “module” are often used interchangeably. Finite
dimensional simple Lie algebras and their representations have been studied extensively. An
affine Lie algebra is an infinite-dimensional analog of a finite dimensional, semisimple Lie algebra.
Therefore, it is natural to study the representation theory of affine Lie algebras.

An affine Lie algebra can be defined in terms of generators and relations determined by a
generalized Cartan matrix (GCM) and corresponding Dynkin diagram. For example, the GCM
and Dynkin diagram corresponding to the affine Lie algebra B(1)

3 are shown below. Notice that if
you were to create a vector, a, from the numbers labeling the nodes of the diagram, that A · a = 0.

A =


2 0 −1 0
0 2 −1 0
−1 −1 2 −1
0 0 −2 2

 1 2 2

1
⇒

A “realization” of a GCM is a triple (h,Π,Π∨) where the Cartan subalgebra, h, is a complex
vector space of dimension n + 2, Π = {α0, α1, . . . , αn} ⊂ h∗ the set of simple roots, and Π∨ =
{h0, h1, . . . , hn} ⊂ h the set of simple coroots such that Π and Π∨ are linearly independent and
αj(hi) = aij where the aij are entries of the GCM [6]. A root system can be defined independently



of Lie algebras, and is a finite subset of an euclidean space satisfying certain axioms [4]. The affine
Lie algebra associated with a realization has generators ei, fi (i ∈ {0, 1, . . . , n} = I) and h and is
defined by the relations:

+ [ei, fj ] = δijhi for i, j ∈ I

+ [h, h′] = 0 for all h, h′ ∈ h

+ [hi, ej ] = aijej for i, j ∈ I

+ [hi, fj ] = −aijfj for i, j ∈ I

+ (ad(ei))1−aijej = 0 for i 6= j

+ (ad(fi))1−aijfj = 0 for i 6= j

Weight Modules and Maximal Dominant Weights

A g-module V is called a “weight module” if it admits a weight space decomposition V =
⊕µ∈h∗Vµ where Vµ = {v ∈ V |h · v = µ(h)v ∀ h ∈ h}. µ ∈ h∗ is called a “weight” if Vµ 6= {0}.
That is, the representation of a Lie algebra is a way to view each element of the Lie algebra as a
linear transformation of a suitable vector space. The weights of the Lie algebra are the eigenvalues
of the linear transformations acting on the vector space. The dimension of the corresponding
eigenspaces are called the weight multiplicities.

My research involves a specific type of representation, V (Λ), called an integrable highest
weight module. A weight in V (Λ) is called maximal if λ + δ 6∈ P (Λ), where the null root,
δ =

∑n
i=0 aiαi for ai the coordinates of the null vector a. A weight, λ, is dominant integral if

λ(hi) ∈ Z≥0. To describe the structure of V (Λ), one only needs to describe its maximal dominant
weights. The maximal dominant weights form a type of “ceiling” to the set of all weights, since
you can obtain all other weights by subtracting non-negative integer multiples of δ. Any other
weight lies on such an infinite string off of a maximal dominant weight.

It is known there are finitely many maximal dominant weights for any integrable highest
weight representation of an affine Lie algebra. However, determining these maximal dominant
weights is a nontrivial task. Tsuchioka found all maximal dominant weights for modules of the
form V (Λ0 + Λs) where 0 ≤ s < p for type A(1)

p−1 [8]. This work was generalized in 2014 by Jayne
and Misra, who found all maximal dominant weights for modules of the form V ((k − 1)Λ0 + Λs)
where 0 ≤ s ≤ n − 1 for type A(1)

n−1 [5]. In 2017, Kim, Lee, and Oh determined all maximal
dominant weights for V (Λ) where Λ is of level 2 for types B(1)

n , D
(1)
n , A

(2)
2n−1, A

(2)
2n , D

(2)
n+1, and of

level 1 for C(1)
n [7].

Inmy thesis, I have given explicit descriptions ofmaximal dominantweights for the integrable
highest weight representation of any affine Lie algebra with highest weight kΛ0. This corresponds
with Kim, Lee, and Oh’s paper in the case of 2Λ0. The following describes the maximal dominant
weights for V (kΛ0) for g = B

(1)
n .

Theorem. [2] Let n ≥ 3, Λ = kΛ0, k ≥ 2. Then
max(Λ)∩P+ = {Λ}∪{Λ− lα0− (l− (

⌈x2
2
⌉

+ l1))α1− (2l−x2)α2−
(∑n

i=3(2l− (x2 +
∑i
j=3 lj))αi

)
where

+ 1 ≤ x2 ≤ k

+ l = max{x1,
⌈xn

2
⌉
}

+ 0 ≤ l1 ≤
⌊x2

2
⌋

+ 0 ≤ l3 ≤ bx2
2 c − l1

+ 0 ≤ ln ≤ ln−1 ≤ · · · ≤ l4 ≤ l3

+ l2 = x2 − x1 for n = 3, l2 = 0 else



Weight Multiplicities

The identification of the multiplicities of the maximal dominant weights is an important part
of determining the structure of a representation. In my thesis, I use a combinatorial tool called
a “crystal base,” which was developed in 1990 by Kashiwara and Lusztig. In particular, I use
the relations in perfect crystals, like the perfect crystal B2 shown below for the affine Lie algebra
B

(1)
3 , to explore the path realization of a representation. This path realization allows one to count

multiplicities of weights, using a formula called an energy function [3]. I am currently working
on determining multiplicities of specific maximal dominant weights by fixing my values for n
and k. For example, the following table lists all maximal dominant weights for the B(1)

n -module
V (2Λ0) where n = 3, 4, and 5. I hope to generalize my results in the future.
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n Maximal Dominant Weight Multiplicity
3 2Λ0 1
3 Λ2 − δ 1
3 Λ0 + Λ1 − δ 1
3 2Λ3 − 2δ 3
3 2Λ1 − 2δ 3
4 2Λ0 1
4 Λ2 − δ 1
4 Λ0 + Λ1 − δ 1
4 Λ3 − 2δ 3
4 2Λ4 − 2δ 3
4 2Λ1 − 2δ 4
5 2Λ0 1
5 Λ2 − δ 1
5 Λ0 + Λ1 − δ 1
5 Λ3 − 2δ 3
5 Λ4 − 2δ 3
5 2Λ5 − 3δ 10
5 2Λ1 − 2δ 5

Directions for Undergraduate Research

Because of the computational and combinatorial nature of my current work, I plan to involve
advanced undergraduate students in this process. Students will work with SageMath, an open-
source mathematics software system, to investigate specific crystals and find patterns. The
problem of finding more efficient ways to study these crystals could interest students.

Additionally, because of my coursework in Operations Research, I am eager to pursue
optimization problems that interest undergraduate students. My experience with both linear
and dynamic programming, and soon nonlinear programming, gives me a variety of tools that
I can introduce to students. These techniques can be applied to specific problems that interest
individual students. Undergraduates will be excited by the opportunity to solve real world
problems.



References
[1] B. Bakalov and K. C. Misra. Lecture notes on lie algebras. unpublished textbook:
Introduction to Lie Algebras and Their Representations, 2015.

[2] S. Crifo. Some maximal dominant weights and their multiplicities for affine lie algebra
representations. Ph.D. Thesis, in progress.

[3] Jin Hong and Seok-Jin Kang. Introduction to quantum groups and crystal bases, volume 42.
American Mathematical Soc., 2002.

[4] J.E. Humphreys. Introduction to Lie Algebras and Representation Theory. Graduate Texts in
Mathematics Series. Springer-Verlag GmbH, 1972.

[5] R. L. Jayne and K. C. Misra. On Multiplicities of Maximal Weights of ŝl(n)-Modules.
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