MA 405-002: Introduction to Linear Algebra and Matrices, NCSU, Spring 2018

Written Homework \#3

Due: Wednesday, February 28

Use of computer programs to perform Gauss-Jordan elimination is acceptable. Please be sure to state what you used and when you used it.

1. As discussed in class, $B_{1}=\left\{1, x, x^{2}\right\}$ and $B_{3}=\left\{1+x-x^{2}, 4+x, 2-x+x^{2}\right\}$ are both bases for P_{2}.
(a) Find the change of basis matrix from B_{1} to B_{3}.
(b) Use what you found in part (a) to confirm that $\operatorname{rep}_{B_{3}}\left(1-2 x+3 x^{2}\right)=\left(\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right)_{B_{3}}$.
2. For each of the following matrices, find bases for the column space and the null space. For each, confirm that the rank-nullity theorem is correct.
Note: if $\operatorname{dim}(V)=0$, then $V=\{0\}$. In this case, we do not write a basis (or, we write the empty set).
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
(b) $\left[\begin{array}{cccccc}1 & 0 & 1 & -1 & 0 & 1 \\ -1 & 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 3 & 2 & 2 & 0\end{array}\right]$
(c) $\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 3 \\ 1 & 2 & 5 & 6\end{array}\right]$
3. Find a basis for the span of $S=\left\{x^{3}+x, 2 x^{3}+3 x, 3 x^{3}-x-1, x+2, x^{3}+x^{2}, x^{2}-8\right\}$, using vectors from S.
4. Find a basis of \mathbb{R}^{5} containing the linearly independent set $S=\left\{\left(\begin{array}{l}0 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$.
