MA 405-002: Introduction to Linear Algebra and Matrices, NCSU, Spring 2018

Written Homework \#1

Due: Friday, January 26

1. Given any $\alpha=a+b i \in \mathbb{C}$ where a and b are not both 0 , find c and d so that $c+d i=\frac{1}{a+b i}$. [Hint: this is a generalization of what we did in class, though you should think of every possible case].
2. Determine whether or not the set with the given operations is a vector space over \mathbb{R}. If it is, prove it. If it is not, say which of the axioms fail to hold.
(a) $V=\left\{\left.\binom{t+1}{2 t} \right\rvert\, t \in \mathbb{R}\right\}$ with the usual addition and scalar multiplication.
(b) $\mathbb{R}^{\mathbb{R}}$ with the addition defined by $f \oplus g=f \circ g$ (composition of functions).
(c) $P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$, the set of all polynomials of degree less than or equal to 2.
3. Show that in any vector space V over \mathbb{R}, if $x, y \in V$ and $a, b \in \mathbb{R}$, then $(a+b)(x+y)=$ $a x+b x+a y+b y$.
4. Determine if each of the following subsets of \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}. If it is, prove it. If not, state why not.
(a) $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 4 x_{1}+3 x_{2}-2 x_{3}=0\right.$ and $\left.x_{1}-x_{3}=0\right\}$
(b) $W=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{1}, a_{2}, a_{3} \in \mathbb{Z}\right\}$ Note: \mathbb{Z} is the set of all integers.
5. Prove that the set $T=\left\{p(t) \mid \int_{0}^{2} p(t) d t=0\right\} \subset P_{2}$ is a vector space. This proof should be similar to those we did in class, using the proposition about subspaces.
6. Show that the subset $W=\left\{\left.\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \in M_{2}(\mathbb{R}) \right\rvert\, a_{11}=a_{22}=0\right.$ and $\left.a_{12}=-a_{21}\right\}$ (called the set of skew-symmetric 2 by 2 matrices) is a subspace of $M_{2}(\mathbb{R})$.
